

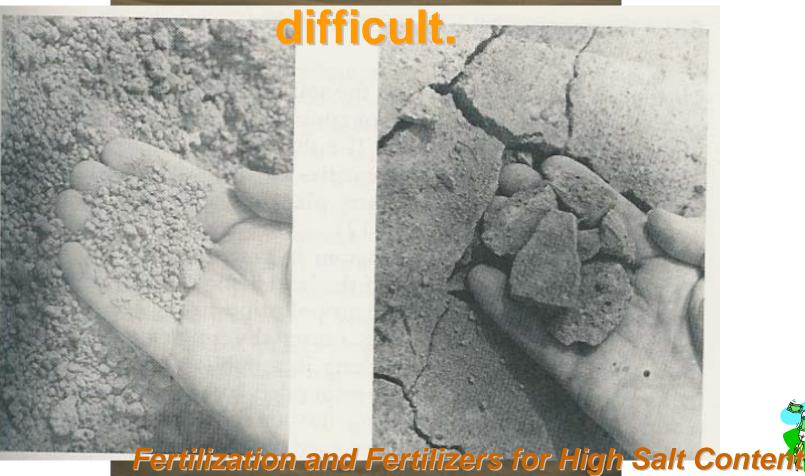
Fertilization and Fertilizers for High Salt Content Soils

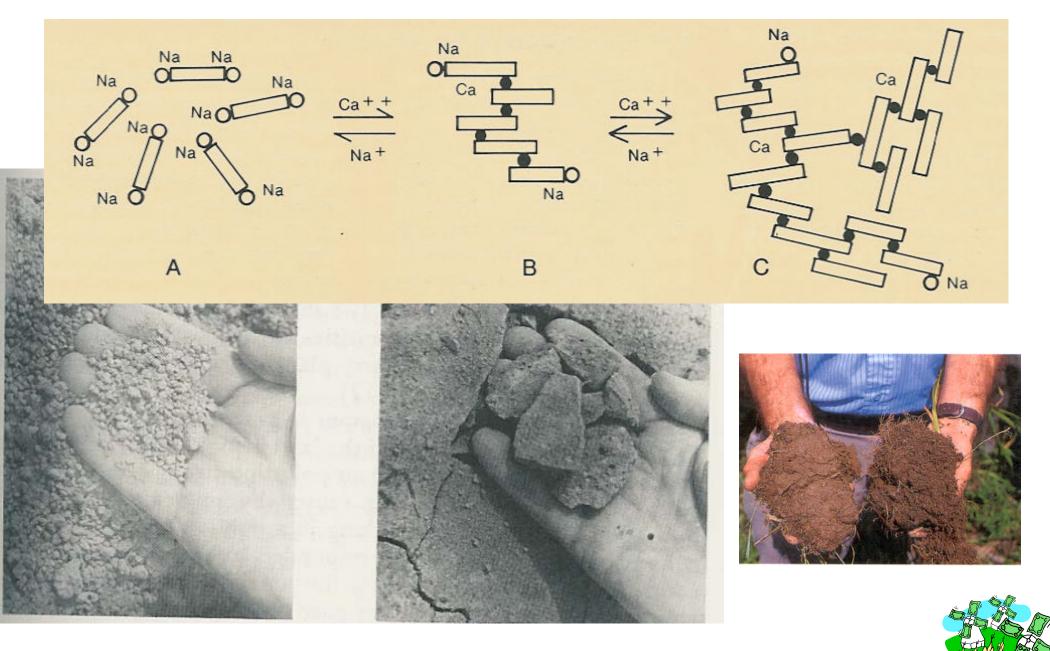
Dr. Denise McWilliams Extension Agronomist New Mexico State University Cooperative Extension Service

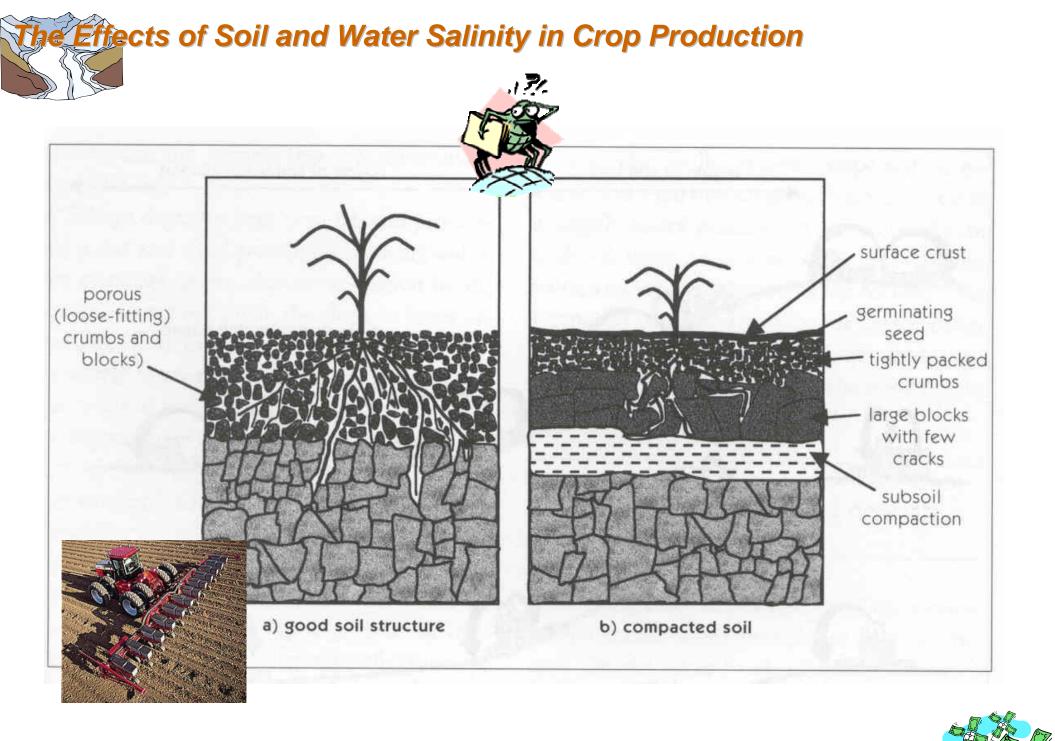
Salinity and Sodicity in New Mexico and Texas Soils

- Concern on soils with salinity and sodicity levels high enough to affect production
- Soils with high amounts of soluble salts are called saline soils (exhibit whitish surface crust when dry—Na₂SO₄; NaCl; CaCO₃—from 3 types of salts: SO₄, CO₃, and Cl)
- Soils high in sodium (sodic soils) may present physical restrictions to plant growth from high amounts of sodium, Na⁺)

e Effects of Soil and Water Salinity in Crop Production **Eactors that can add salts or sodium to soils:** C High pH and sodic soils Continuous cropping, especially monocropping (3) Slowly permeable claypans (low drainage) and/or limited profile modification once compaction occurs Saline seeps (?) Salinization along ditches or limited irrigation or no preplant irrigation as well as type of irrigation method (*) Wetland areas or ponded areas in fields (F) Limited drainage or irrigation water evaporation to soil surface as well as land leveling management **S Low water guality and/or not mixing poor water supply** S Improper crop selection or seed placement (s) High salt/sodium fertilizer choice and guessing at rate Fertilization and Fertilizers for High Salt Content

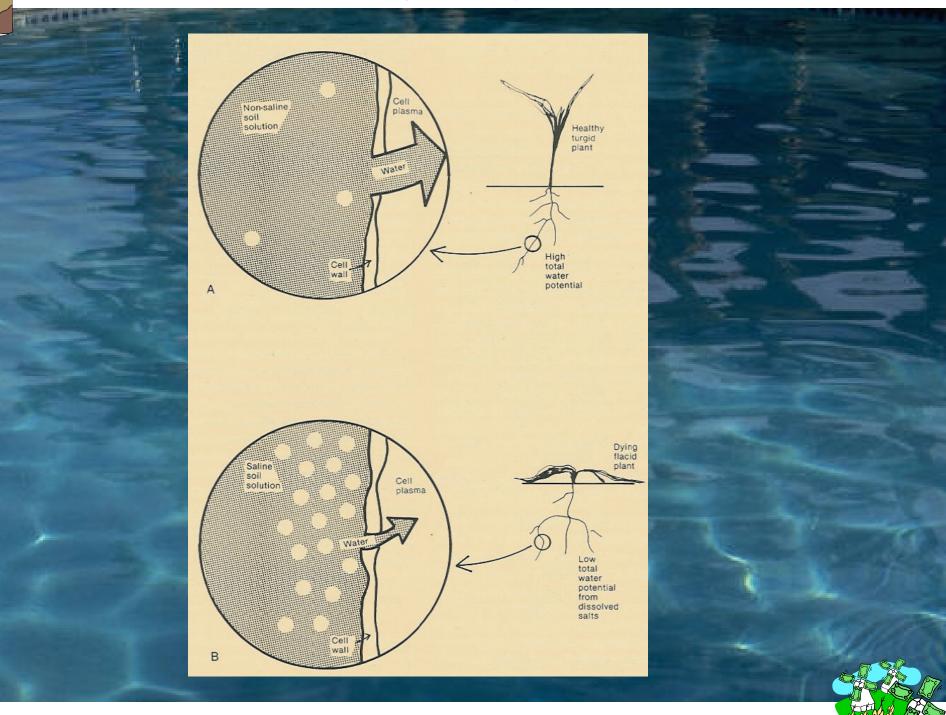

Soils high in salts, with high amounts of carbonates of sodium are rare and usually associated with coarse-

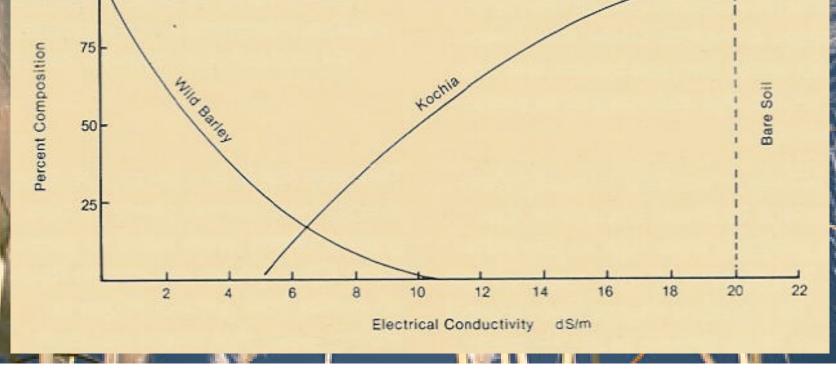

textured materials.


Table I. Composition and solubility of some common evaporite minerals (salts).

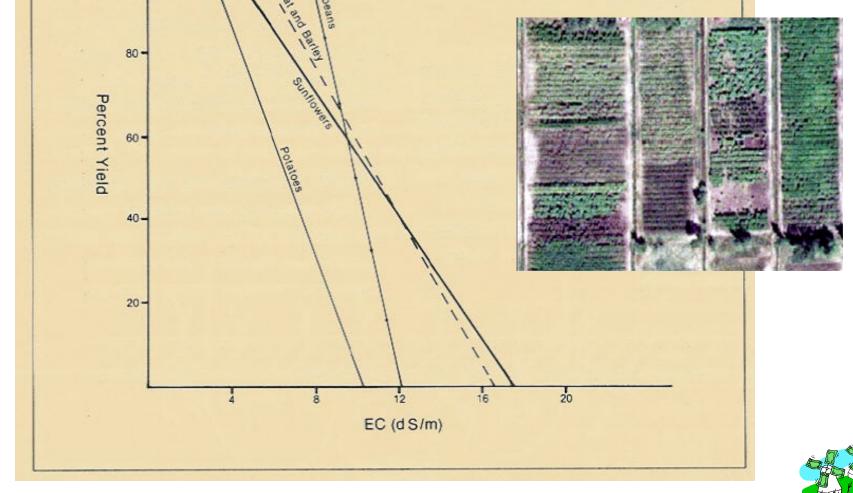
Mineral	Composition	Solubility	Chemical Name		
	(moles/liter)				
Calcite (lime)	CaCO3	0.00014	Calcium Carbonate		
Gypsum	$CaSO_4 \cdot 2H_2O$	0.0154	Calcium Sulfate		
	$CaCl_2 \cdot 6H_2O$	7.38	Calcium Chloride		
Magnesite	MgCO ₃	0.001	Magnesium Carbonate		
Hexahydrite	$MgSO_4 \cdot 6H_2O$	4.15	Magnesium Sulfate		
Epsomite	MgSO ₄ • 7H ₂ O	3.07	Magnesium Sulfate		
Bischofite	MgCl ₂ • 6H ₂ O	5.84	Magnesium Chloride		
(Washing soda)	Na2CO3 • 10H2O	2.77	Sodium Carbonate		
(Baking soda)	NaHCO3	1.22	Sodium Bicarbonate		
Mirabilite	Na2SO4 • 10H2O	1.96	Sodium Sulfate		
Thenardite	NaSO ₄	3.45	Sodium Sulfate		
Halite	NaCl	6.15	Sodium Chloride		

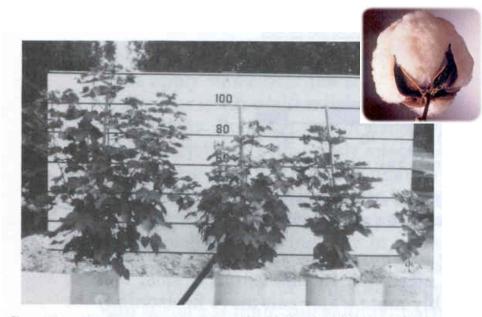
Soils high in sodium (15% or more of the clay sites are occupied by sodium) have poor physical condition that often restricts root growth and makes tillage

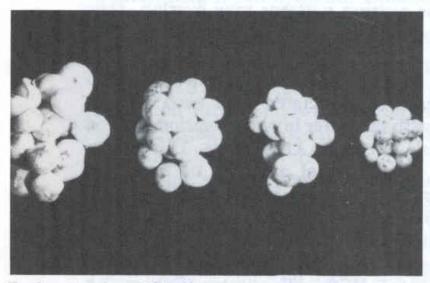



Table 2. SCS	S classificatio	on of saline and	sodic soils.	
Saline Soils				
class	Non-saline soil series	Saline phase of soil series		
criteria	S.E. EC < 4 dS/m	S.E. EC = 4–16 dS/m	S.E. EC I6 dS/	
Natric (Sod	ic) Soils			
class	glossic subgroups	typic or udic subgroups	leptic subgroups	aquoll suborder
subsoil				
criteria	*SAR > 13 weak claypan	*SAR > 13 strong claypan	*SAR > 13 claypan high salinity	*SAR > 13 claypan poorly drained

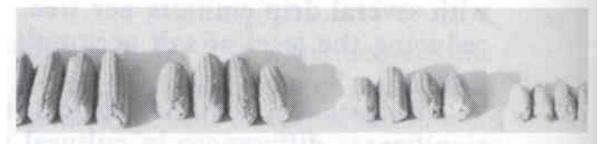
*Most natric soils meet this chemical requirement; however, some soils are also considered natric with SAR < 13 under certain conditions.


S.E. = saturation extract

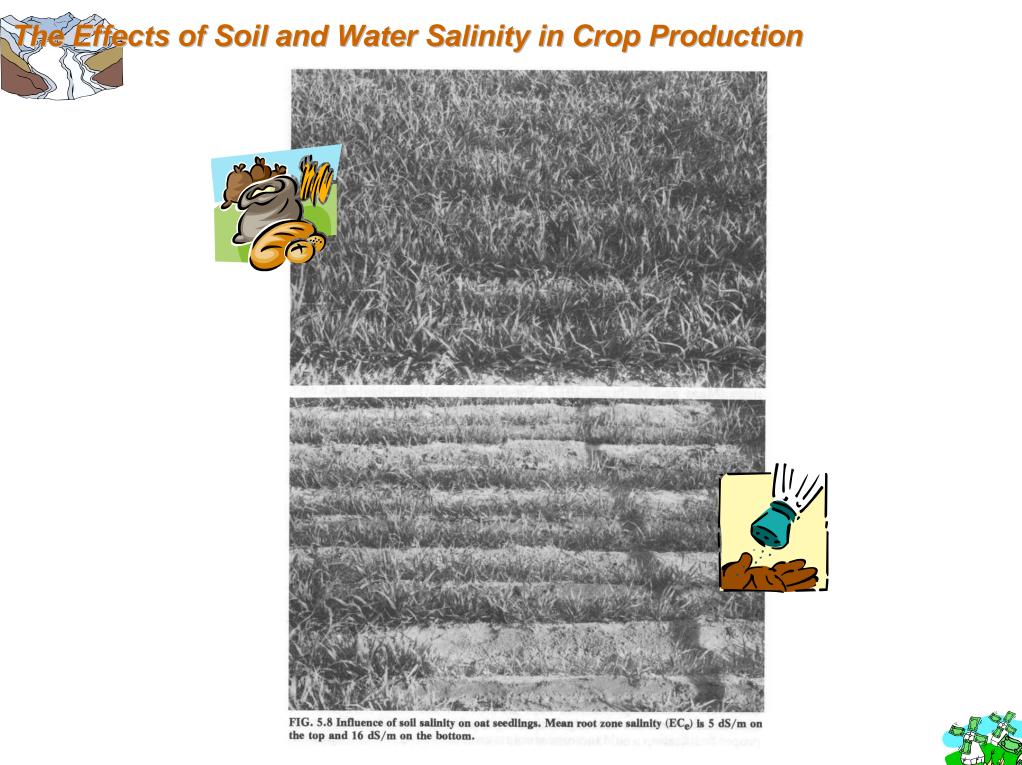

Crop symptoms from high salinity or sodicity are generally the same as symptoms of moisture stress from dry conditions. Plants are stunted, take on a deep blue-green color, with leaves eventually becoming brown and brittle on the tips and margins. Plant can be used as indicators of saline or sodic conditions as tolerance varies with plant species.

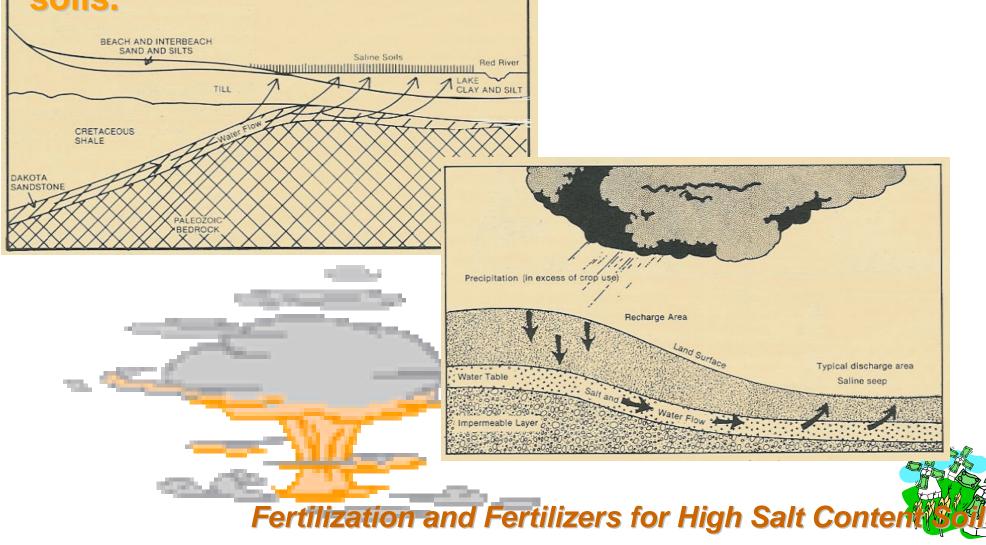

Crop plants vary in their tolerance to soluble salts. Higher than normal concentrations of some ions can hinder or block nutrient uptake and certain physiological processes.

Crop	Salinity* at initial yield decline (threshold) (A)	Percent yield decrease per unit increase in salinity beyond threshold (B)	Qualitative salt tolerance rating†
	dS/m	%/(dS/m)	
Alfalfa Medicago sativa	2.0	7.3	MS
Almond Prunus dulcis	1.5	19	S
Apple Malus sylvestris	_		S
Apricot‡ Prunus armeniaca	1.6	24	S
Avocado ‡ Persea americana	<u></u>		S
Barley (forage)§' Hordeum vulgare	6.0	7.1	MT
Barley (grain)§ Hordeum vulgare	8.0	5	т
Bean Phaseolus vulgaris	1.0	19	S
Beet, garden Beta vulgaris	4.0	9	MT
Bentgrass Agrostis palustris			MS
Bermudagrass# Cynodon Dactylon	6.9	6.4	т
Blackberry Rubus spp.	1.5	22	S
Boysenberry Rubus ursinus	1.5	22	S
Broadbean Vicia Faba	1.6	9.6	MS
Broccoli Brassica oleracea botrytis	2.8	9.2	MS
Bromegrass Bromus inermis	—		MT
abbage Brassica oleracea capitata	1.8	9.7	MS
Canary grass, reed Phalaris arundinacea		_	MT
Carrot Daucus Carota	1.0	14	S
Clover, alsike, ladino, red, strawberry Trifolium spp	1 5	19	MO
Trifolium spp. Llover, berseem	1.5	12	MS
T. alexandrinum Corn (forage)	1.5	5.7	MS
Zea Mays Corn (grain)	1.8	7.4	MS
Zea Mays Corn, sweet	1.7	12	MS
Zea Mays Cotton	1.7	12	MS
Gossypium hirsutum Cowpea	7.7	5.2	т
Vigna unguiculata Cucumber	1.3	14	MS
Cucumis sativus Date palm	2.5	13	MS
Phoenix dactylifera	4.0	3.6	т

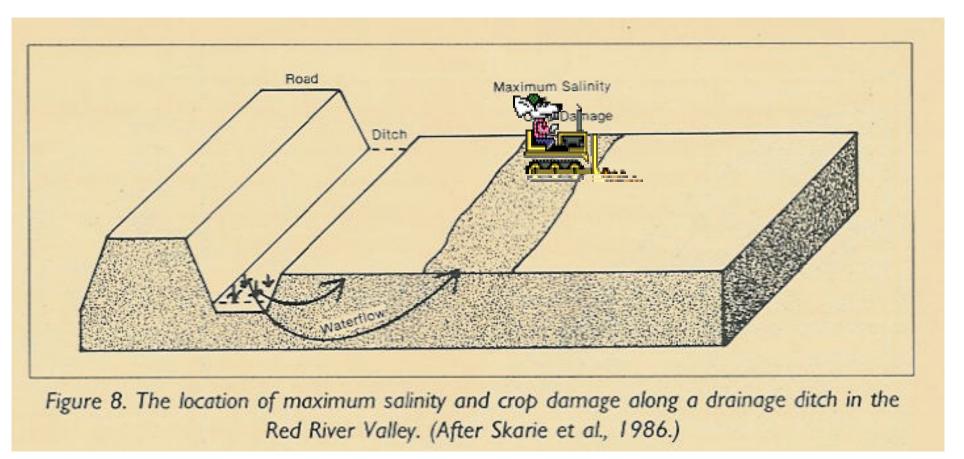

Growth reduction of cotton for salinity levels of 1, 14, 28, and 42 dS/m (left to right)

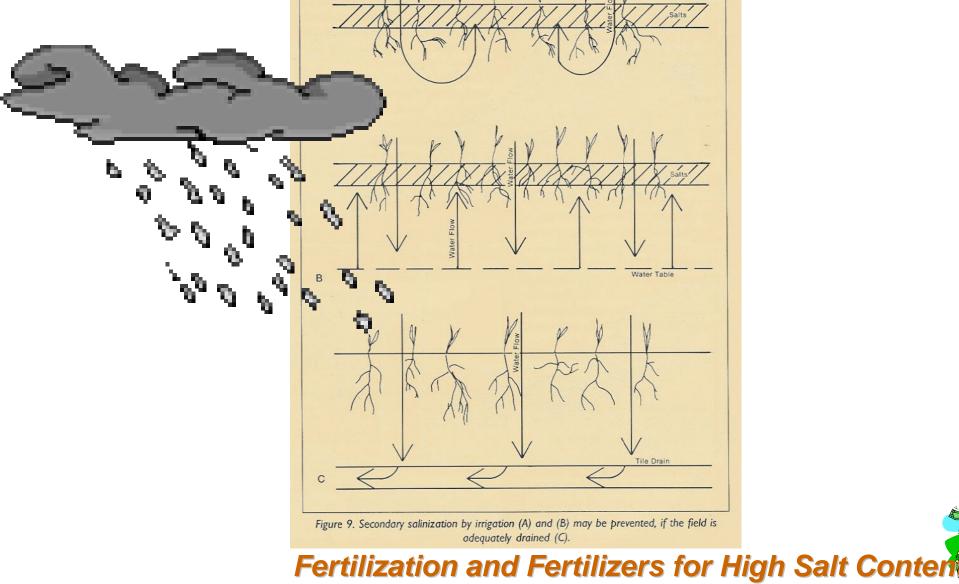
Decline in onion yields due to salinity levels of 1, 6, 11, and 17 dS/m (left to right)

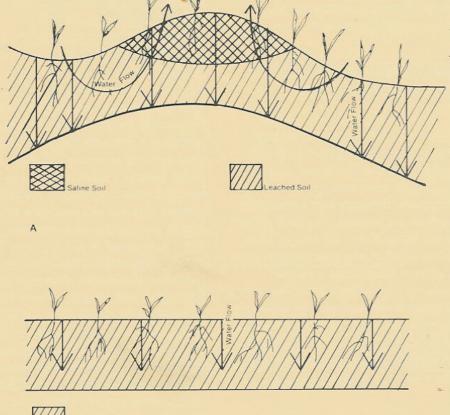

Growth reduction of pea caused by salinity levels of 1, 3, 7, 11, and 14 dS/m (left to right)


Yield reduction of sweet corn caused by salinity levels of 1, 6, 10, and 14 dS/m (left to right)

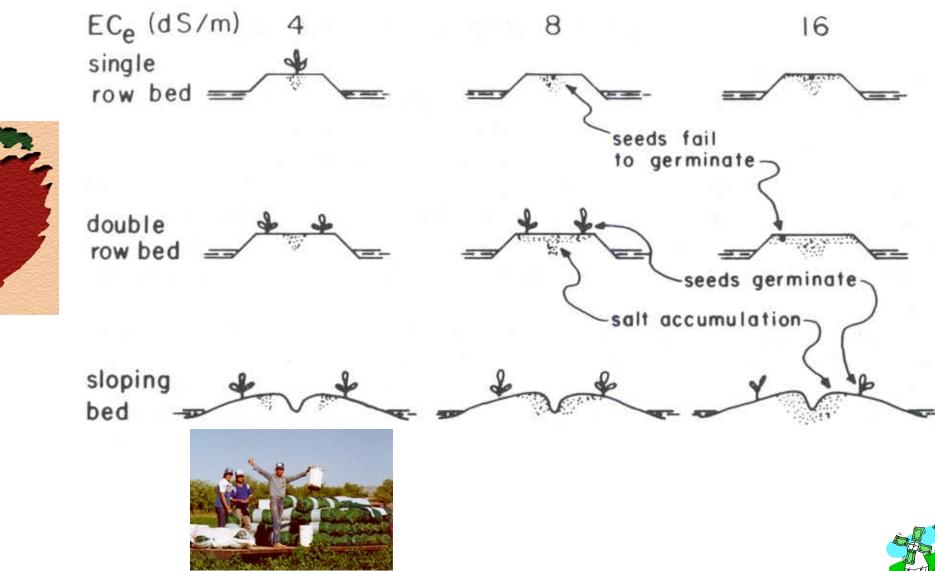
Fertilization and Fertilizers for High Salt Content


Corn


Restrictive subsoils and crusting problems can also add to problems in soil structure, making permeability even lower and even creating more claypans on some soils.


Maximum salinity and crop damage along a drainage or irrigation ditch may vary; however, this effect may be accentuated with certain fertilizers.

Careful selection of fertilizers along with drainage or adequate leaching of irrigation salts and eventually fertilizer salts can improve crop growth and yield.


Secondary salinization in irrigated fields at points of evaporation can be better managed by planting pattern, capping, even distribution of irrigation water with flow rate and field levelling and drainage through much of

the root profile.

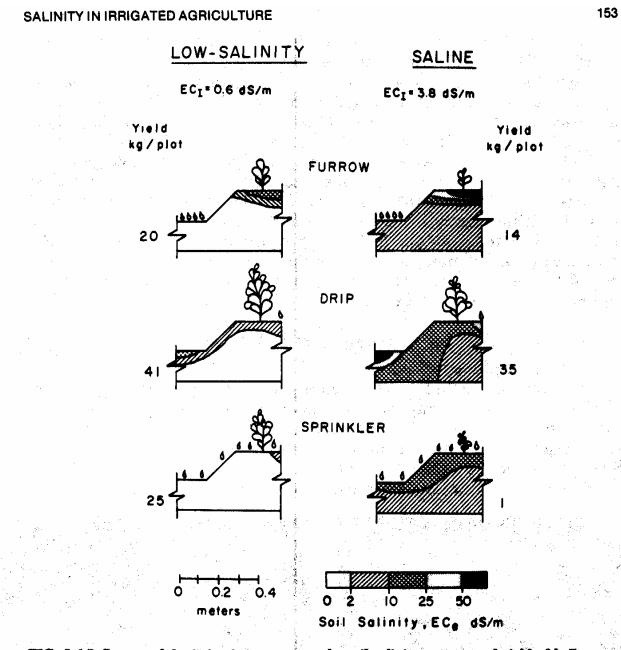


FIG. 5.6 Influence of the irrigation system on the soil salinity pattern and yield of bell pepper at two levels of irrigation water quality (Bernstein and Francols, 1973a).

Fertilizer salinities that can add problems to fields over time.

Salt Index of Fertilizer Materials and Soil Amendments

			alt Index	
	Per equal			r unit
Material and Analysis	of material			bs.) of
Material and Analysis	sodium nitrat	te = 100)	plant nut	rients
NITROGEN				
Ammonia, 82% N		47.1	0.572	
Ammonium nitrate, 34%	N	104.0	3.059	
Ammonium sulfate, 21%		68.3	3.252	
Urea, 46% N		74.4	1.618	
Urea-ammonium nitrate	solution			
28% N (39% a. nitrate,	, 31% urea)	63.0	2.250	
32% N (44% a. nitrate,		71.1	2.221	
Calcium nitrate, 15.5% N	V	65.0	4.194	
Sodium nitrate, 16.5% N	1	100.0	6.060	
PHOSPHATE				
Ordinary or single super	phosphate			
20% P ₂ O ₅		7.8	0.390	
Triple superphosphate				
45% P ₂ O ₅		10.1	0.224	
Monoammonium phosph	hate			
11% N, 55% P ₂ O ₅		26.7	0.405	
10% N, 50% P ₂ O ₅		24.3	0.405	
Diammonium phosphate			12 12 12	
18% N, 46% P ₂ O ₅		29.2	0.456	
Ammonium polyphosph	ate			
10% N, 34% P ₂ O ₅		20.0	0.455	
POTASH				
Potassium chloride, 60%	K.O	116.2	1.936	
Potassium sulfate	1020	11012	1.000	
50% K2O, 18% S		42.6	0.852	
Potassium nitrate		1210	0.004	
13% N, 44% K,O		69.5	1.219	
Sulfate of potash-magnes	sia	00.0	11010	
22% K,O, 11% Mg, 22		43.4	1.971	
Monopotassium phospha				
52.2% P2O5, 34.6% K2		8.4	0.097	
Potassium thiosulfate			01007	
25% K ₂ O, 17% S		68.0	2.720	
SULFUR				
Ammonium thiosulfate (12% N. 26% 5	S) 90.4	7.533	
Ammonium polysulfide			2.960	
			21000	
MISCELLANEOUS				
Dolomite, 12% Mg		0.8	0.042	
Magnesium oxide, 60% M	Mg	1.7	0.002	
Gypsum, 23% Ca		8.1	0.247	
Calcium carbonate, 40%		4.7	0.083	
Magnesium sulfate, 9.8%	Mg	44.0	2.687	

Salt-affected field in California resulting from insufficient leaching.

Severe soil salinity problem in a Colorado corn field.

Sodic soil in Idaho.

Effect of salinity on cotton in Arizona.

TABLE 5.10. GUIDELINES FOR INTERPRETATION OF WATER QUALITY FOR IRRIGATION (FROM AYERS AND WESTCOT, 1976)

	Degree of Problem				
Water Quality Criterion	None	Increasing	Severe		
Salinity					
EC (dS/m)	< 0.75	0.75-3	> 3		
Permeability					
1. Low salt water					
EC (dS/m)	> 0.5	0.5-0.2	< 0.2		
2. Sodium hazard adj. SAR*					
Montmorillonitic soils	< 6	6-9	> 9		
Illite-Vermiculitic soils	< 8	8-16	>16		
Kaolinite-Sesquioxidic soils	<16	16-24	>24		
Specific Ion Toxicity					
Sodium [†] (adj SAR)	< 3	3-9	> 9		
Chloride \dagger (mol/m ³)	< 4	4-10	>10		
Boron (mg/L)	< 0.75	0.75-2.0	> 2.0		
Miscellaneous Effects					
Nitrogen (mg/L)	< 5	5-30	>30		
Bicarbonate (mol/m ³)‡	< 1.5	1.5-8.5	> 8.5		
pH	[Normal range 6.5 to 8.4]				

*adj. SAR (adjusted Sodium-Adsorption-Ratio) can be calculated using equation [5.6]. Values presented are for the dominant types of minerals in the clay fraction of a given soil. The higher the salinity of the water, the less likely that permeability problems will occur.

*†*Values are for sensitive crops such as trees and woody plants. Most annual crops are less sensitive.

[‡]Overhead sprinkler irrigation with high bicarbonate waters during periods of extremely low humidity may cause white deposits on fruit or leaves.

TABLE 13–5. Salt Index per Unit of Plant Nutrients Supplied for Representative Materials*

Material	Analysis†	Salt index per unit of plant nutrients
Nitrogen carriers		
Anhydrous ammonia	82.2	.572
Ammonium nitrate	35.0	2.990
Ammonium sulfate	21.2	3.253
Monammonium phosphate	12.2	2.453
Diammonium phosphate	21.2	1.614
Nitrogen solution 2A	40.6	1.930
Potassium nitrate	13.8	5.336
Sodium nitrate	16.5	6.060
Urea	46.6	1.618
Phosphorus carriers		
Superphosphate	20.0	.390
Superphosphate	48.0	.210
Monoammonium phosphate	51.7	.485
Diammonium phosphate	53.8	.637
Potassium carriers		
Manure salts	20.0	5.636
Potassium chloride	50.0	2.189
Potassium chloride	60.0	1.936
Potassium nitrate	46.6	1.580
Potassium sulfate	54.0	.853
Potassium magnesium sulfate	21.9	1.971

* L. F. Rader, L. M. White, and C. W. Whittaker, Soil Sci., 55:201. Copyright 1943 by The Williams & Wilkins Company.

 \dagger By analysis is meant the percentage of nitrogen in nitrogen carriers, of P_2O_5 in phosphorus carriers, and of K_2O in potassium carriers.

	5-4.4-8.3 (5-10-10)		10-8.8-16.6 (10-20-20		
	Pounds	Salt index	Pounds	Salt index	
Ammoniating solution	148	5.79			
Diammonium phosphate			373	6.37	
Urea			260	9.71	
Ammonium sulfate	195	6.51	200	2.71	
Treble superphosphate	23030		417	2.10	
Superphosphate	1,000	3.90	41/	2.10	
Muriate of potash (41% K)	400	21.89			
Muriate of potash (50% K)		21107	667	38.72	
Conditioner	100		110	30.72	
Filler	157				
	2,000	38.09	180 • 2,000	56.90	

TABLE 13–6. Comparative Salt Index of 5-4.4-8.3 and 10-8.8-16.6

The Effects of Soil and Water Salinity in Crop Production Factors that can LIMIT salts or sodium to soils:

- **S Lower pH and limit sodium or salts to soils**
- **(F)** Rotational cropping, especially three to five year rotations
- **Good drainage and/or profile infiltration**
- No saline seeps

- **S** No salinization along ditches or with less irrigation or no preplant irrigation as well as irrigation method
- **(F)** No wetland areas or ponded areas in fields
- **S** Drainage or irrigation water use and infiltration below soil surface along with land leveling management
- **(F)** Good water quality and/or mixing water supply when needed
- Good crop selection and seed placement
- **S** Careful fertilizer use and choice

