Agricultural Drainage

J. Phillip King, P.E., Ph.D.
Associate Professor/Associate Dept. Head
Department of Civil, Agricultural, & Geological Engineering
New Mexico State University
Classes of Subsurface Drainage Designs

- Steady-state
 - Humid regions
 - Control steady water table
- Non-steady state
 - Arid, Irrigated
 - Drop water table after irrigation/rainfall
- Interceptor
 - Protect cropland from source of high groundwater
Primary Functions of Agricultural Drains

• Control of water table – root zone aeration
 – EBID
 – Drainage density of 20 f/acre

• Removal of salt from root zone
 – HCCRD
 – Drainage density of 22 f/acre plus field systems
Yield effects of Salinity
Drain Installation – Then & Now

Ca. 1900

Ca. 2000
The local drainage systems

- Open ditch
- Installed in 1920s-1930s
- Functions:
 - Water table control
 - Salt removal
 - Storm water conveyance
 - Operational spill return
Drain flows between the states
Long-Term Salt Balance

- **Mass Balance**: $Q_{in} TDS_{in} - Q_{out} TDS_{out}$
- **Elephant Butte to El Paso (Courchesne Bridge)**
 - 90,640 acres of EBID + 10,000 acres of EPCWID
- **Courchesne Bridge to Fort Quitman**
 - 59,000 acres of EPCWID + 18,000 acres of HCCRD
 - Mexico (???)
Salt Balance, Elephant Butte to El Paso
Salt Balance, El Paso to Fort Quitman
The Future

Legal Considerations

– Possible changes in water quality regulations
– Urbanization and municipal use of Project Water
– Changes in Project operation

• Environmental Considerations
 – Drains as habitat
 – Restoration efforts on drains
 – Illegal dumping in drains
Picacho Drain Bosque Park

- City of Las Cruces, EBID, and Southwest Environment Center
- NM Fish and Game land
- Picacho Drain right-of-way
- No increased depletion due to habitat restoration
 - Offset open water evaporation with removal of large, dense canopy salt cedar
- Drain function is paramount
Picacho Drain